> Problem Solving on Vectors

BY DHIR SIR.....

- A vector perpendicular to $\hat{\imath}+\hat{\jmath}+\hat{k}$ is

1. $\hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}}$

$$
\vec{A} \cdot \vec{B}=0 \Rightarrow A_{x} B_{x}+A_{y} B_{y}+A_{2} B_{2}=0
$$

2. $\hat{\imath}-\hat{\jmath}-\hat{\mathrm{k}}$

$$
A_{x}=1, A_{y}=1, A_{2}=1
$$

(1) $|x|+|x-1+|x|=1$
3. $-\hat{\imath}-\hat{\jmath}-\hat{\mathrm{k}}$
(4) $3 \times 1+2 \times 1-5 \times 1=0$
4. $3 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}$

- Out of the following set of forces, the resultant of which cannot be zero?

1. $10,10,10$
2. $10,10,20$
3. $10,20,20$
4. $10,20,40$

$$
\vec{A}+\vec{b}+\vec{C}=0
$$

$$
|\vec{A}|+|\vec{B}| \geqslant|\vec{C}|
$$

- The ratio of maximum and minimum magnitudes of the resultant of two vectors \vec{a} and \vec{b} is $3: 1$. Now $|\vec{a}|$ is equal to

1. $|\vec{b}|$
2. $22|\overrightarrow{\mathrm{~b}}|$

$|\vec{a}|+|\vec{b}| \Rightarrow \max$
3. $3|\overrightarrow{\mathrm{~b}}|$
4. $4|\overrightarrow{\mathrm{~b}}|$

$$
|\vec{a}|=2|\vec{b}|
$$

$$
\begin{aligned}
& \xrightarrow[\vec{a}]{\stackrel{a}{\longrightarrow}}|\vec{a}|-|\vec{b}| \Rightarrow \operatorname{Min} \\
& \frac{|\vec{a}|+|\vec{b}|}{|\vec{a}|}=3 \Rightarrow|\vec{a}|+|\vec{b}|=3|\vec{a}|-3|\vec{b}| \\
& 2 y|\vec{b}|=x|\vec{a}|
\end{aligned}
$$

- Two forces, each equal to F, act as shown in Fig. Their resultant is

1. $F / 2$
2. 5
3. $\sqrt{3} \mathrm{~F}$

4. $\sqrt{5} \mathrm{~F}$

- Vector \vec{A} is 2 cm long and is 60° above the x - axis in the first quadrant. Vector \vec{B} is 2 cm long and is 60° below the x-axis in the fourth quadrant. The sum $\vec{A}+\vec{B}$ is a vector of magnitude

1. 2 cm along positive y -axis
2. 2 cm along positive x -axis
3. 2 cm along negative y -axis
4. 2 cm along negative x -axis

$$
|\vec{A}|=|\vec{B}|=2 \mathrm{~cm}
$$

$$
\text { Rescitant }=A \cos 60+B \cos 60=2 \times \frac{1}{x}+\tau \times \frac{1}{x}
$$

$$
=2 \mathrm{~cm}
$$

- What is the angle between two vector forces of equal magnitude such that their resultant is one - third of either of the original forces?

1. $\cos ^{-1}\left(-\frac{17}{18}\right)$
2. $\cos ^{-1}\left(-\frac{1}{3}\right)$

$$
\begin{aligned}
& |\vec{R}|=\frac{|\vec{A}|}{3} \\
& |\vec{R}|=\sqrt{A^{2}+B^{2}+2 A D \cos \theta}
\end{aligned}
$$

3. 45°
4. 120°

$$
\xrightarrow[\vec{A}]{\vec{A} \theta}
$$

$$
1+\cos \theta=\frac{1}{18}
$$

$$
\frac{A}{3}=\sqrt{A^{2}+A^{2}+2 A^{2} \cos \theta}
$$

$$
\cos \theta=\frac{1}{18}-1=-\frac{17}{18}
$$

$$
\frac{A A^{\prime}}{9}=2 A^{2}(1+\cos \theta)
$$

$$
\theta=\cos ^{-1}\left(-\frac{17}{18}\right)
$$

- The angle between $\vec{A}+\vec{B}$ and $\vec{A} \times \vec{B}$ is

3. $\pi / 2$
4. π

- The projection of a vector $\vec{r}=(3 \hat{\imath}+\hat{\jmath}+\hat{k}$ on the $\mathrm{x}-\mathrm{y}$ plane has magnitude

1. 3
2. 4

3. $\sqrt{14}$

4. $\sqrt{10}$

- If $|\vec{A}+\vec{B}|=|\vec{A}|=|\vec{B}|$, then the angle between \vec{A} and \vec{B} is

1. 126°

$$
|\vec{A}+\vec{A}|=\sqrt{A^{2}+B^{2}+2 \operatorname{An} \cos \theta}
$$

2. 60°

$$
A=\sqrt{A^{2}+A^{2}+2 A^{2} \cos \theta}
$$

3. 90°

$$
A^{2}=2 p^{2}(1+\cos \theta)
$$

4. 0°

$$
\cos \theta=\frac{1}{2}-1=-\frac{1}{2} \Rightarrow \theta=120
$$

- If vector $\vec{A}=\hat{\imath}+2 \hat{\jmath}+4 \hat{\mathrm{k}}$ and $\vec{B}=5 \hat{\mathrm{\imath}}$ represent the two sides of a triangle, then the third side of the triangle can have length equal to

1. 6
2. $\sqrt{56}$
3. Both of the above
4. None of the above

$$
|\vec{A}|=\sqrt{1+2^{2}+4^{2}}=\sqrt{21}=4.6
$$

$$
|\vec{B}|=5
$$

- Three vectors $\vec{A}, \vec{B}, \vec{C}$ satisfy the relation $\vec{A} \cdot \vec{B}=0$ and $\vec{A} \cdot \vec{C}=$ 0 . The vector \vec{A} is parallel to

1. $\overrightarrow{\mathrm{B}}$

$$
\vec{A} \cdot \vec{B}=0 \Rightarrow \theta_{1}=90
$$

2. $\overrightarrow{\mathrm{C}}$

$$
\vec{A} \cdot \overrightarrow{C l}=0 \Rightarrow \theta_{2}=90
$$

3. $\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{C}}$

4. $\vec{B} \times \vec{C}$

- The angle which the vector $\vec{A}=2 \hat{\imath}+3 \hat{\jmath}$ makes with the y-axis where it and $\hat{\jmath}$ are unit vectors along x - and y - axes respectively, is

1. $\cos ^{-1}\left(\frac{3}{5}\right)$
2. $\cos ^{-1}\left(\frac{2}{3}\right)$
3. $\tan ^{-1}\left(\frac{2}{3}\right)$

$$
\begin{aligned}
& \tan =\frac{2}{3} \\
& \theta=\tan \left(\frac{2}{3}\right)
\end{aligned}
$$

4. $\sin ^{-1}\left(\frac{2}{3}\right)$

- Two vectors \vec{a} and \vec{b} are such that $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$. What is the angle between \vec{a} and \vec{b} ?

1. 0°
2. 90°
3. 60°
4. 180°

$$
\begin{aligned}
& |\vec{a}+\vec{b}|^{2}=|\vec{a}-\vec{b}|^{2} \\
& a^{2}+b^{2}+2 a b \cos \theta=a^{2}+b^{2}-2 \cos \cos \theta \\
& 4 a b \cos \theta \geq 0 \Rightarrow \begin{aligned}
\cos \theta & =0 \\
\theta & =90
\end{aligned}
\end{aligned}
$$

- Given $\vec{A}=2 \hat{\mathrm{\imath}}+p \hat{\mathrm{\jmath}}+q \hat{\mathrm{k}}$ and $\vec{B}=5 \hat{\mathrm{\imath}}+7 \hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}}$. If $\vec{A} \| \vec{B}$, then the values of p and q are, respectively,

1. $\frac{14}{5}$ and $\frac{6}{5}$
$\vec{A} \| \vec{B}$

$$
p=\frac{14}{5}
$$

2. $\frac{14}{3} \operatorname{and} \frac{6}{5}$

$$
q=\frac{6}{5}
$$

3. $\frac{6}{5}$ and $\frac{1}{3}$
4. $\frac{3}{4}$ and $\frac{1}{4}$
$\frac{A_{x}}{B_{x}}=\frac{A_{y}}{x_{y}}=\frac{A_{2}}{B_{z}}$

- If \vec{A} is perpendicular to \vec{B}, then

1. $\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=0$

$$
\vec{A} \cdot \vec{B}=0
$$

2. $\vec{A} \cdot \vec{B}=A B$

$$
\begin{aligned}
\vec{A} \cdot(\vec{A}+\vec{B}) & =\vec{A} \cdot \vec{A}+\vec{A} \cdot \vec{B} \\
& =A^{2}+0 \\
& =A^{2}
\end{aligned}
$$

3. $\vec{A} \cdot[\vec{A}+\vec{B}]=A^{2}$

$$
\text { 4. } \overrightarrow{\mathrm{A}} \cdot[\overrightarrow{\mathrm{~A}}+\overrightarrow{\mathrm{B}}]=\mathrm{A}^{2}+\mathrm{AB}
$$

