Problem Solving on Vectors

An Initiative of IIT Alumni.... SSMARTAR ACHEVERS Nurturing success ... Audit of SMARTACHIEVERS LEARNING PVT. LTD. DELHI

BY DHIR SIR....

• Out of the following set of forces, the resultant of which cannot be zero? $\overrightarrow{A} + \overrightarrow{N} + \overrightarrow{C} = 0$

ろ

C

1. 10, 10, 10

2. 10, 10, 20

3. 10, 20, 20 τ

4. 10, 20, 40

• The ratio of maximum and minimum magnitudes of the resultant of two vectors \vec{a} and \vec{b} is 3 : 1. Now $|\vec{a}|$ is equal to

• Two forces, each equal to F, act as shown in Fig. Their resultant is

• Vector \vec{A} is 2 cm long and is 60° above the x – axis in the first quadrant. Vector \vec{B} is 2 cm long and is 60° below the x – axis in the fourth quadrant. The sum $\vec{A} + \vec{B}$ is a vector of magnitude

1. 2 cm along positive y – axis

2. 2 cm along positive x – axis

3. 2 cm along negative y – axis

4. 2 cm along negative x – axis

A=B Z/m60 Alas60 RL0860 $Resultants = A (us b) + B (us 60 = 2X - \frac{1}{2} + TX - \frac{1}{2}$

 What is the angle between two vector forces of equal magnitude such that their resultant is one – third of either of the original forces? $\left| \overrightarrow{R} \right| \ge \left| \overrightarrow{A} \right|_{2}$

 \Rightarrow

 $\left|\frac{\partial}{\partial R}\right| = \sqrt{\beta^2 + \beta^2 + 2\beta\beta}$

 $\frac{R}{q} = 2R \left(1 + \cos\theta\right)$

0 = (m)

 $A^2 + A^2 + 2A^2 4 0$

 $1. \cos^{-1}\left(-\frac{17}{18}\right)$ $\frac{1+\cos\Theta=\frac{1}{18}}{\frac{1}{8}}$ 2. $\cos^{-1}\left(-\frac{1}{3}\right)$ 3. 45° $\log \theta = \frac{1}{|\varphi|} - |z| = \frac{17}{|\varphi|}$ 4. 120°

• The angle between $\vec{A} + \vec{B}$ and $\vec{A} \times \vec{B}$ is 1. 0 5A+03 D 2. π/4 3. /π/2 4. π

• The projection of a vector $\vec{r} = (3\hat{i} + \hat{j}) + \hat{k}$ on the x – y plane has magnitude

• If $|\vec{A} + \vec{B}| = |\vec{A}| = |\vec{B}|$, then the angle between \vec{A} and \vec{B} is

- If vector $\vec{A} = \hat{i} + 2\hat{j} + 4\hat{k}$ and $\vec{B} = 5\hat{i}$ represent the two sides of a triangle, then the third side of the triangle can have length equal to
 - $|\overline{A}| = \sqrt{1 + 2^2 + 4^2} = \sqrt{21} = 46$ 1. 6 $\left|\frac{7}{8}\right| = 5, \sqrt{56} \approx 7.5$ *2.* √56 46,5,75 46,5,6 3. Both of the above 4. None of the above

• Three vectors \vec{A} , \vec{B} , \vec{C} satisfy the relation \vec{A} . $\vec{B} = 0$ and \vec{A} . $\vec{C} = 0$. The vector \vec{A} is parallel to

• The angle which the vector $\vec{A} = 2\hat{i} + 3\hat{j}$ makes with the y – axis where \hat{i} and \hat{j} are unit vectors along x – and y – axes respectively, is

• Two vectors \vec{a} and \vec{b} are such that $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$. What is the angle between \vec{a} and \vec{b} ?

• Given $\vec{A} = 2\hat{i} + p\hat{j} + q\hat{k}$ and $\vec{B} = 5\hat{i} + 7\hat{j} + 3\hat{k}$. If $\vec{A} \mid \mid \vec{B}$, then the values of p and q are, respectively,

AND 1. $\frac{14}{5}$ and $\frac{6}{5}$ 2. $\frac{14}{3}$ and $\frac{6}{5}$ 3. $\frac{6}{5}$ and $\frac{1}{3}$ 4. $\frac{3}{4}$ and $\frac{1}{4}$

• If \vec{A} is perpendicular to \vec{B} , then A B = O / 1. $\vec{A} \times \vec{B} = 0$ \checkmark \overline{A} $(\overline{A} + \overline{M}) = \overline{A} + \overline{A} + \overline{A}$ 2. $\vec{A} \cdot \vec{B} = AB$ $\vec{A}. \vec{A}. \vec{A} + \vec{B} = A^2$ $= A^2 + D$ ΞA^C 4. $\vec{A} \cdot [\vec{A} + \vec{B}] = A^2 + AB$